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§ 1. INTRODUCTION

Three-dhnensional separated flow represents a domain of fluid mechanics of

great practical interest that is now just beyond the reach of definitive theoretl-

eal analysis or numerical computation. It has been a topic of intensive study

over the past three decades. Reliable theoretical analysis and numerical compu-

tation and proper interpretation of experimental observations all depend cru-

cially on a correct understanding of the behavior of flow separation.

Steady three-dimensional flow separation has been studied by Maskell (1955),

Legendre (1956, 1965, 1972, 1977, 1982), _Verld (1962, 1979), Lighthill (1963),

\Vang (1972, 1974, 1976), Perry and Falrlle (1974), Hsleh and Wang (1976), Ilunt

et. al. (1978), ttan & Patel (1979), Tobak & Peake (1979, 1980, 1982), Dallmann

(1983), Hornung & Perry (1984), and Zhang (1985). Important advances in the

understanding of the nature of three-dimensional flow separation have been

made which are well sulnmarlzed in a recent review paper by Chapnlan (1986).

In particular, it is now established (Lighthill, 1963) that the line of separation is
itself a skin-friction line onto which adjacent skin-fi'ietion lines converge asymp-

totically, and is not an envelope of skin-frictlon lines as posed by Maskell (1955).

However, issues concerning the origin of three-dimensional flow separation, and

especially the existence of Wang's "open" separation, have not been completely

resolved.

Unsteady flow separation, on the other hand, is not well understood, pal'tieularly

in three dimensions. The often-quoted MRS (Moore 1958, Rott 1956, Sears

1956) criterion seems supported by some numerical computations and the ana-

lytic solution of Williams and Johnson (1974) to the unsteady boundary layer

equations, but is difficult to apply in practice as the movement of the separation

point is not known h prlo,'i. Vh'tually all theoretical studies on unsteady flow

separation (e.g., Cebeel, 1982) are based on the two-dlmensional boundary-layer

equations. Tliese cease to be valid at the onset of separation, so that no coneht-

slon about the. subsequent behaviour of flow separation can be drawn from

them.
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It is clear that a correct theory of the onset of flow separalion and of the subse-

quent separated flow must be based on tile full Navier-glokes equations and not

the boundary-layer equations. In this respect, it is interesting to note that

whilst the solutions to the boundary layer equations may possess singularities

(e.g. the Goldstein singularity on tile line of separalhm), solutions of the

Navier-Stokes equations are analytic everywhere. Therefore, it is not only more

desirable but actually conceptually simpler to base our study of flow separation

on the properties of solutions to the full Navier-Stokes equations rather than

their bounda,'y-layer approximation.

In this paper we shall restrict the scope of our investigation to the topological

aspects of unsteady three-dimenslonal separated flows. In this regard, we

observe that all results concerning the topology of stea,ty t hree-dhnensional

separated flows that have been reported to date ar_.e obtainable solely' on the

basis of the following properties of the velocity field V, namr 1.v

(i) v" is analytic O)

(ii) v-f7 = 0 (2)

(iii) _7 = 0 on the body surface (3)

Equation (3) expresses the, no-slip boundary condition ()f the viscous fluid at the

wall, whereas equation (2) is the continuity equation of a_, incompressible fl_.ow. *

On the other hand, as pointed out earlier, the analytleity eopdition (1) of V is a

property of any solution to the Navier-Stokes equations: V would be singular

(e.g. the Goldstein singularity at the llne of separation) if the flow were

governed by the boundary-layer equations. These properties are shared, of

course, by all solutions of the Navier-Stokes equations. On the other hand,

separation properties that result from them are shared by classes of solutions.

It is the existence of t)r()pertles that are shared by cla._ses e)f solutions that sug-

gests the adoption of a topological description of the flow, mince topological pro-

perties also are shared by' classes of solutions. By restricting our attention to

topological properties only, we are able to avoid invoking the momentum equa.

tion which would be needed if we were to ask for the solution corresponding to

specific boundary conditions. Nevertheless, the literature cited ha.s shown that

a fairly complete (albeit non-specific) topological description of separation in

steady three-dimenslonal flow can be drawn based on Eqs (1) - (3) alone. In sec-

tions 2 and 3 we shall construct a mathematical framework for steady th,-ee-

dimensional flow separati()n, ending up with a precise description of the class of

flow separation we consider. The same framework will permit us, in section 4,

to draw an analogous description of unsteady three-dim(_nsional separated flow
of the same class.

* The case of steady compressible flow is discussed in section 6
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\Ve note that the analysis given in this paper based on the postulates (1) - (3) is

actually more generally applicable than to the Navier-Stokes equations alone. In

particular, the analysis will be applicable to whatever modeled equations a,'e

used to represent steady turbulent ftow.

§ 2. CLASSIFICATION OF STEADY FLOW SEPARATION

Consider a steady flow of an incompressible viscous fluid over a body whose sur-

face is B. Let _r/_" be a local orthogonal eurvilinear coordinate system such that

_" = 0 coincides with the body surface and the r/-axis is along the line of separa-

tion (to be defined more precisely' in § 2.2 and § 3.5). Denote the scale coeffi-

cients by h t(_,r/,S'), t, 2(_,r/,S') and 1, respectively, and the eor,'espondlng unit vec-

tors by , e 2 and e a .

2.1 Properties of a Vector Field

Let U-'(_,r/,_') be a vector field in the three-di_ensional space _r/_', where _ is ana-

lytic jointly in {, _g. and _'. A field line of U is a curve whose tangent is every-

where parallel to._, whereas a field surface is one whose normal is everywhere

perpendicular to U. When the vector field is the flow velocity, its field lines are

called streamlines and its field surfaces are called stream surfaces.

By the theorems of existence and uniqueness of solutions of ordinarv_differential

equations, it is shown that through each regular point, where U =/=0, there

passes one and only one field line. Consequently, ir two field lines intersect with

or are tangent to each other, the point of i.kntersection or of tangency must be a

singular point or the vector field where U = 0. Moreover, a field line cannot

end except at a singular point. On the other hand, there exist two ind_.ependent

families of field surfaces whose normals, whil_.e both perpendicular to U, are dif-

ferent. Through a regular line on which U :_ 0 (except possibly at a finite

number of isolated points), there passes one and only one field surface of each

family. Consequently, no two field surfaces of the same family can in_rsect

with or be tangent to each other except along a singular line on which U = 0.

Also the boundary of a field su,-faee, ir it exists, must be a singular line. Furth-

ermore, if two field sm'faces of different families intersect with each other, the

line of intersection must be a field line. On the other hand, they cannot be

tangent to each other except along a singular line, as they have different nor-

mals.

To sum up: (a) the field lines and field surfaces are determined solely by the

direction, and not the magnitude, of the vector field; (by if two field lines inter-

sect with or are tangent to each other the point of intersection or of tangency

must be a singular point; (c) if two field surfaces intersect with each other, the

llne of intersection must be a field line; (d) if two field surfaces are tangent to

each other, the line or tangency must be a singular field line.

In application to fluid flow we note that a stream surface must either originate

from (or terminate at) infinity, or else it must originate from (or terminate at)

the body surface which, according to (3), is a singular field su,'face. This latter

ease is relevant in the stu(ly of flow separation.
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We now compare the properties of the velocity field i7 and thitt of cOV/cOf near

the body surface. The body surface is a slngular surface of V according to.__Fq.

(3), but is not, in general, a singular surface of OI/_£Of. I_y its analytlcity l_is

proportional to f as f ---* O, hencethe dh'e_tion of V is tile same as that of V//_

as _"---* 0. By l,'Hosi)ital's rl,le, V_._ ---+OV/O¢ ,as ¢ ---+{). So the direction of V
0 V

is the same _ tim direction of _ as f--*0. Coise(pelltly, they have the same

field lines and field surfaces near the body surface. Since is propor°

tional to the skin-friction vector 7w, the limiting streamlines coincide with the

skin-friction lines. As the magnitude of a veetor field does not affect its field

lines or field surfaces, we simply define

/-/ov (4)

A 5eld surface of 0
_-f and that of _ are said to be adjunct field surfaces if they

intersect with the body surface at the same line. Evidently, two adjunct field

surfaces are tangent to each other, and hence have the same normal along their

line of intersection with the body surface.

Furthermore, from the continuity equation (2), we have

O(h_u) O(hlv ) O(hlh_w )
-- + -- + - o (5)

0_ Or/ Of

where

(s)

On the body su,'face, where (3) holds, Eq (,5) reduces to

This shows that • .. "_a =0, i.e.

77 "',B _-o= o (8)

where n--*B is the normal to the body__,surface. Accordingly, the body surface is a
OV

field surface of the vector field -_-7, and it must therefore also be a limiting
us

stream surface of V.
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We note here that in what follows only the continuity equation on the body sur-

face (7) is needed, but we do not need the full continuity equation (5). In other

words, all the topological properties given in sections 2-3 are derived based on

(1), (3) and (7). This point is important and will be used in extending (in sec-

tion 6) the incompressible flow analysis to the compressible flow case.

2.2 Classification of Flow Separation

In what follows shall define flow separation in a way that will exclude eonside,'a-

tion of what Wang (1974) ilas called "open" separation. This is not to deny the

existence of such a category of flow but simply to affirm that it escapes our clas-

sification. A flow is said to separate from the body surface B if there exists a
stream surface S that intersects B on the line I" and if streamlines on S in the

vicinity of F all originate from F and are directed away from F. We call S a

separation stream surface and F a line of separation; the latter will be taken to

be the r/-axis. Flow attachment differs from flow separation merely in having

an opposite flow direction, but otherwise has identical topological properties.

For simplicity we shall refer, wherever no confusion may arise, only to flow

separation with the understanding that whatever we say can be made to apply

to flow attachment as well by a suitable reversal of flow directions.

Two mutually exclusive cases exist:

(1) The separation stream surface S is tangent to the body surface B along t]_
OV

whole of the separation line F. In this case tile adjunct field surface of --

0f
must also be tangent to the body surface along the same separation line .

This is po si_ only if the separation line is itself a singular line of the vec-

tor field (0fJf-0 , i.e. a singular line of the skin-friction vector field e-*_.

This type of separation will be called singular tangent separation.

(2) The separation stream surface S intersects with the body surface B non-

tangentially, i.e. at a non-zero finite angle along th& llne of separation F. In
OV

this case the adjunct separation field surfaee of _ also intersects with the

body surface at non-zero angle along the same sep.._ration line F. Since the
OV

body surface is shown to be a field surface of _ , the line of separation

must be a field line of --_, and hence is itself a skin-friction line. Due to

the analytieity of'_ the line of separation F must either be a singular skin-

friction line, along which "_w ----0 everywhere, or a regular skin-friction line

eontainlng, possibly, a finite number of isolated singular points of-_w. In

the former ease the separation is called singular separation, whereas the

latter ease is called regular separation.

To sum up, within our classification, there exist two and only two types of flow

separation of an incompressible viscous fluid:
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(a) Regular separation, where the line of separation is il,self a regular skin-

friction line (containing, possibly, a finite number of singular points), from

which the selmration stream surface leaves the body surface at a non-zero

angle.

(b) Singular separation, where the line of separation is ::_ singular skln-friction

llne, frolll which the separation stream surface loaves tile body surface

either at a non-z_.r_) angle or tangentially along the llno of separation.

Regular separation is the common type of flow separ:ttion in genuinely three-

dhnensional flow (Peake & Tobak, 1980) and will be studied in Lhe next section.

By contrast, two-dimensional and axisymmetric flow sel_aration must be of

singula,- type due to flow symmetry. If there exists a singular point of the skin-

friction field from which a streamline leaves the body surt",t0e, symmetry requires

that the singular polm must lie on a singular line and the streamline must lie on

a stream surface which leaves the body surface, rendeE'iug ihe separation singu-

lar.

As an example of tangent separation we cite the high licynolds number flow

past a slender body, e.g., a cone or a delta wing, at small incidence where the

lines of separation are only slightly inclined to the direction of the main flow.

F.T. Smith (1978) presented evidence showing that the limiting form of the flow

at infinite Reynolds number is a potential flow in which are embedded vortex

sheets carrying concentrated vortieity, tte also showed that the vortex sheets

must separate tangetltially from the body surface. This type of flow separation

at infinite Reynolds numb_q- thus belongs to the class of singular tangent separa-

tion. Tangent separation will be shown (in section ,5) to prevail as well when

flow separation first al)tmars in the impulsively started ['low past a circular

cylinder.

§ 3. REGULAR SEPARATION

In this section we shall study the local behavior of the ['lmv field neat- the line of

separation.

3.1. Existence of a Singular Point on the Line of Separation

hi regular separation, the S_.l):u'ation stream surface ,q leaves the body surface /3

with a non-zero angle nh>ng the separation line F. Consequently

where n-"s is the unit normal ()f the separation stream Stlrface.

Now, streamlines on the separation stream surface N in t.h(_ vicinity of the

separation line 1" originate from F. If all suph st,'ea_tllines (m S intersect with F

tangentially to the body surface B, then [Tn-_s X e"_3Jl = 0 along the separation

line F, contradicting ((3). lh,ncc, there must be at least one streamline on S that

intersects with lhe br_dy s_lrl'ace B at some point P ()n l', maMng a non-zero

angle to the hody s,rl'ace. Let the equation of this blreanllh_e be giwm

parametrically by _= kl(r), _/ = k,,(r), f= ka(r ). Th,.n
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±]
dr Jp _ 0 (10)

Since the direction of this streamline at the point of intersection/_ is parallel to

the limiting direction of l-Fat P, which, in turn, is pa'allel to cOV

d_L/dr dk'Jdr dk,_/dr

\Vith condition (10)and / =0from (7),Eqs.(ll)yield

(_,sj P

Ou = Ov = 0 (12)

So the point of intersection P is a singular point of the skln-frictlon field-_u,.

We conclude that there lnust exist at least one singular point of the skln-friction

field _v on the line of separation in regular separation. The above arguments

also show that any streamline on the separation stream surface that intersects

with the body surface must do so at a singular point on F. Such singular points

are isolated on F in regular separation. They, together with the remaining

singular points in the skin-frietion field, must obey certain topological rules as

described by ttunt, et. al. (1978). In particular, the number of nodal points

must exceed the number of saddle points by two on any smooth body surface

that is topologically equivalent to a sphere.

3.2. A Necessary Condition

ets shown in § 2.2, the line of separation F is itself a skin-friction line. Its equa-

tion may then be given by

on F (13)

Since F is taken to be the r/-axis, we also have

d_:dr;=O: 1 on F (14)

Therefore, f,'om 03) and (1,t) we get

=0 (15)

525



The above analysis shows that (15) is a necessary condition for the rl -axis, (i.e.

= S------0) to be a line of separation. However, contrary to Zhang's (1985) con-

clusion, it is not a sufficient condition for the r/-axis to t)e a lille of separation.

3.3 The Flow Reversal Condition

In the situation of flow separation, it is clear that the body surface B and the

separation stream surface S constitute two harriers to tile flow such that near

and on opposite sides of the llne of separation F a certain component of the flow
Ou Ou .

must reverse direction. In particular, (-'_-¢)¢-o+___.._< 0 and (-_¢)_-o______ > 0 for flow

separation where fluid flows away from the body surface f = 0. Likewise,
Ou Ou

(--_c)'_-°.-,¢--*u >0 and (/7c)__0__,¢--_ <0 for flow attachment where fluid flows toward

the body surface. Consequently we obtain

[ O_u ]

Fl(rl) =--- [O_Of J_-¢-0 <0 for flow separation
(16)

[ O2u ]

R(rj) = (0_0qJ(=__0 >0 for flow attachment
07)

These flow reversal conditions, which are direct generalizations of the conditions

for two-dimensional flow, were first obtained by Zhang (1985).

3.4 Types of Singular Points on the Line of Separation

(1) Velocity field near a singular point

Without loss of generality, we let the singular point 0 on F be at { = r/ = f = O.

Expanding the veloclty components u,v,w as Taylor series about the point 0

and using (3) yield

u = (a t _¢q- b a r/ + elf)f+ • • • (18a)

v = (a 2 _+ b2 r/ + c0f)S- + .-- (18b)

,,, = (a 3{+ b3 rl + c a f)f+ . . . (18c)

where al, ..,, c a are constants, and "+..." denotes higher order terms in _, r/, g.

As (15) and (7)imply, respectively,

bl_-_O , (19a)

aa=b 3 = 0 , (19b)
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the streamlines near the singular point 0(0,0,0) on the line of separation are

therefore given by the following differential equations

h 10d_ h.2odrl df
- _ (20)

al_+ clf a2_+ b2rl + c2f c3q

where hio = (hi)(=,l=g=o, i=1,2. We now investigate the behavior of the
streamlines near the singular point, first on the body surfaee B and then on the

separation stream surface S.

(2) On the body surface B

As the body surface is approached, q --* 0 and the streamlines coincide with the

skin-friction lines as noted in section 2.1. The equations for the skin-friction

lines are obtained from (20) with f = 0:

hlod_ al_

h2odrl a2_ --}-b2r I
(21)

According to singularity theory of ordinary differential equations and the fact

that hi0 > 0 and h20 > 0, the nature of the singular point 0 of the skin-friction

field is determined by the sign of

qB = alb2 (22)

In particular, a node (including a focus) corresponds to qB > O, whereas a saddle

point corresponds to qB "_ O.

(3) On the separation stream surface S

Let the equation of the separation stream surface be given by

S: q = F(5_) (23)

As S intersects the body surface f = 0 along the r_-axis, we have

F(0,r/) = 0 (24)

Expanding F(_,r/) as a Taylor series about the point _ = r/ = 0 and using (24) we

get

f = F(_,r/) = k_ + 0(_2,_r/) (25)

The equations of the streamlines on the separation stream surface

obtained by substituting (25) in (20):

S are

hlod_ _ h2odrl = __d_ (26)

Accordingly, we get
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k ---- (hloe 3 -- al)/c 1 (27)

and

1 dE cs_

h2o dr/ (a 2 -4- kc2)(-4- b2T/
(28a)

d_"

dE - k (28b)

Equation (27) determines the local slope k of the separation stream surface S at

the singular point 0, whereas Eqs (28) determine the streamlines on S. With _cr/

as the surface coordinates of S, singularity theory of ordinary differential e(&ua-

tions again asserts that the nature of the singular point 0 of the flow field V on

the separation st.ream surface is deterinined by the sign of

qs = c3b2 (29)

In particular, a node (inchlding a focus) corresponds to q.s" _ 0, whereas a saddle

point corresponds to qx < 0.

Now, in tile case of flow separation we have c a > 0, but a I = I?(0) < 0 from
(16), so c a and al, and hence qB and qs, are of opposite signs. We conclude that

a singular point of the flow field on the line of separation must be either

(a) a saddle point in the skin-friction field on the line I" and, at the same loca-

tion, a nodal point on the separation stream surface S. Because of the

presence of the body surface B, the node on S is one-sided and hence can

only be a regular node, not a focus. The streamlines on S all originate at

the nodal point and are directed away fi'om it. In effect, they have entered

the stream surface through the saddle point in the ._kin-friction field on the

line of separation. \Ve call the saddle point a s;Mdh_ point of separation.

The flow is illustrated in Fig. 1.

B if,S

Fig 1. Flow near a saddle point of separation 0 of tile skin-frictlon field on the

line of separation F. With flow direction reversed this figure also represents
the flow near a saddle point of attachment.
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Fig 2a. Flow near a nodal point of separation 0 of tile skin-friction field on the

line of attachment F. With flow direction reversed this figure also represents

the flow near a nodal point of attachment.

(u)

or

a nodal point in the skin-friction field on the line F and, at the same loca-

tion a half-saddle point on the separation stream surface S. In this case,

there is only one streamline on S that has entered through the node in the

skin-friction field. This node may be either a regular node or a focus, but

in either ease it must be a node of separation. Tile rio,,, is illustrated in

Fig. 2.

3.5 Distribution of Singular Points on the Line of Separation

The flow direction of the skin-frlction

which is the r/-axis, is determined by

point 0(0,0,0) we have, from (185)

field _'w along the line of separation,

[.o_-j0["X-T]____0=D(r/). Near the singular

D(r/) = b2r_ + 0(7/2) (30)

At a saddle point of separation a I = R(0) < 0 and qB = aib2 < 0, hence b2 > 0

and tile flow is away from the saddle point. Similarly, at a nodal point of

separation a_ < 0 and qn = alb2 > 0, hence b 2 < 0 and the flow is toward the

nodal point.
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I

Fig 2b. Flow near a focus of separation of the skln-friction field.

Furthermore, on the lh_e or separation rwhere _=q=O, wc have [O-_f]r

from (15). Hence, every point P on F where

=0

is a singular point of _*w.

singular point on ['.

D(_)v,r = 0 (31)

Consequently, D(r/) changes sign only when passing a

Combining the above two results, we see that along tile line of separation _w

must always flow frotn a saddle point of separation (Ss) toward a node of

separation (/X_). (By reversing the dlreetion of the flow field we see also that

along a line of attachment _u must always flow from a node of attachment (N_)

toward a saddle point of attachment (Sa).)

It is now evident that a line of separation r in regular separation must originate
at a saddle point of separation. If I" is closed it must also contain a node of

separation, this being a consequence of the continuity of flow direction along F

and of condition (31). On the other hand, if F is an open curve on the surface

of a three-dimensional finite body its end-points must be singular points of _'w.

The rule governing the direction of flow along the line of separation then

requires that these end-points be nodes of separation.

530



3.6 Summary of Properties of Regular Flow Separation

Tile mathematical properties of regular flow separation derived in sections 2 and

3 are summarized as follows.

(a) The line of separation F is itself a skin-friction line. Consequently, when it

is chosen as the q-axis of a curvilinear orthogonal coordinates _¢r/_" it is

necessary that

(32)

Also

2u I
0_0 f J{=(=0 < 0 for flow separation (33a)

"°u /
c) G0 f J_-f-0 > 0 for flow attachment (33b)

(b) The line of sepat'ation must originate from a saddle point of the skin-
friction field. It must end at a nodal point of separation if it is a closed

curve or at a pair of nodal points of separation if it is an open curve.

(c) A saddle point of the skin-frlction field on the llne of separation is simul-

taneously a half-nodal point of the flow field on the separation stream sur-

face (el. Fig. 1). A nodal point of separation of the skin-friction field on the

line of separation is simultaneously a half-saddle point of the flow field on

the separation stream surface (cf. Fig. 2).

§ 4. UNSTEADY THREE-DIMENSIONAL FLOW SEPARATION

By unsteady flow separation we mean time-dependent flow separation relative to

an observer on the body surface. An unsteady flow is said to separate from the

body surface B at time t if there exists a stream surface S at t that intersects
B on the line F and if the streamlines on S at time t in the vicinity of F all ori-

ginate from F and are directed away from it. The stream surface S is called the

instantaneous separation stream surface at the instant t, and F the instantane-

ous line of separation. Flow attachment at time t is defined analogously with

flow directions reversed.

To describe unsteady flow separation relative to an observer on the body sur-

face, it is imperative that we use a frame of reference that is fixed to the body

surface. The body in question may be a rigid body performing a given motion,

or it may be a deformable body.

Now for an unsteady incompressible flow viewed in a h'ame of reference fixed to

the body surface, the continuity equation at any instant of time remains the

same as that of steady flow, i.e.

531



v. F(r;t) -- o (34)

Furthermore,

_(7";/) is analytic in the spatial variables 7 (35)

being a consequence of the Navier-Stokes equations. \Vith our choice of tile

frame of reference, the b(mndary condition that there be Iic_ slip at the body sur-

face remains

_(_t ) = 0 on the body surface (36)

even though the flow above the surface may be unsteady.

We note that tile time variable t appears only as a pa.rameter in Eqs. (34) - (36)

which are otherwise identical to Eqs. (1) - (3). Of co_'se, the time t appears as
c9V .

a genuine independent variable through the term _ in the momentum equa-

tion. The thne-history effects of the unsteady motion of the fluid are thus

introduced o_ply through the momentum equation, which now contains an inertia

force term F i ae'isingfrom the motion, or deformation, of the body in addition

to the external force C. For instance,

Fi =- + 2n x v+ n x (n x v) + x (37)

for a rigid body where ',% is the velocity of the center of mass of the body and _-I

is its angular velocity.

As we have noted in § 1, the momentum equation for steady flow, which would

be needed to determine the separated flow field uniquely, could be by-passed if

we asked only for a topological description of the flow near the body surface.

Analogously, we can avoid invoking the unsteady nlomentum equation by again

asking only for a topological description of unsteady flow separation, this time

based on Eqs (34) - (35) instead of Eqs. (1) - (3). By comparing the two sets of

equations, we conclude that separation of an unsteady incompressible viscous

flow at time t, when viewed from a frame of reference fixed to the body surface,

is topologically the same as that of the fictitious steady flow obtained by freez-

ing the unsteady flow at. the instant t. In other words, the topological proper-

ties of unsteady flow separation at time t, as recorded by, say, a snapshot of the

flow, are governed by the same rules that govern separation in steady flow. In

this sense, all results in §§ 2 and 3 for steady separation apply to unsteady flow

separation instantaneously.

We further remark that_ the MRS criterion of unsteady flow separation aims at

answering the question of "massive" flow separation which is determined by the

momentum equation with an inertia force term, wherea.s our theory based on

equations (34) - (36) and ignoring the momentmn equation describes only the

Meal behavior of flow separation near the body surface. Of course, the behavior

of flow separation ,as described in this paper must always be present locally in

any "massively" separated flow field.

532



§ 5. APPLICATIONS

This section is devoted to a preliminary, qualitative discussion of some aspects

of unsteady flow separation.

5.1 The Stream Functions

It is well known that the continuity equation (34) may be replaced by introduc-

ing two stream functions ¢(r_t) and X(_',t), namely

= V_ X VX (38)

Evidently, Eq (34) is automatically satisfied, and _ is analytic in 7 provided ¢

and X are. Also g(_t) ---= eonst, and X(_t) = eonst, represent two families of

instantaneous stream surfaces at time t.

The equation of the body surface in the body surface-fixed coordinates must be

independent of time, and hence must be of the form

B(r-3= o (3o)

As the body surface is a stream surface for all time, we choose the ¢_family of

stream surfaces such that g(7;t) ----0 contains the body surface. To satisfy con-

dition (36) it is then necessary and sufficient that _b be of the form

_(_;t) = B2(r -_) S(r*;t ) (40)

where S and B are functionally independent. It is easily shown that tile surface

S('_',t) = 0 , (41)

if it exists, is also a stream surface. Furthermore, if it intersects with the body

surface at the instant t, it is an instantaneous separation stream surface and the

intersection is an instantaneous line of separation. An important problem is to

study the evolution of the surface S(r-*',t) = 0, especially near the time t = T s

when it first intersects with the body surface.

5.2 Onset of Separation for Impulsively Started Flow past a Circular

Cylinder

As an example of the problem just cited, consider the two-dimensional impulsive

incompressible flow Uo_ past a stationary circular cylinder of radius a. For high

U¢_a
Reynolds number flow, R e -- >> 1, C.Y. Wang (1967) used the method

/2

of matched asymptotic expansions to obtain a uniformly valid solution to the

third order in { = 1/R e that is valid for small time. His solution for the stream

function in polar coordinates (r,O) is

533



sin 0 (r + e 4 in 0 1 + e -- N/7_ r/ erfc ,7
r r

sm o - --4 erf ,7 + _ erfc rl - 7{-) r; e -_2

+ d 8t3,_ sin o ¢o_ o aa (.) + 0(, 3) (42)

where all the lengths are measured in units of a, velocity' components in units of

Uc_. Hence Ois measured in units of U_a and we choose to measure time t in

units of ea/U_. The variable 77 is related to r by 77= (,' - 1)/(2c N/t-). The
first term in (42) represents the invlseid potential flow at the initial instant,

t = 0. The solution (42) may also be written

¢(_1,0 ;t) = le VT- sin O [G,(r/) + eV_-(a2(r/) + 2%/7- Ga(r/) cos O}] (43)

W h e r e

1 o

Gl(r/) = r/ err t/ + _ (e "-_" - 1) (44)

1 3 ?2 3 _._G2(r/) = -- .72 + @.7 -- 7 erf rl + "7 erJ'c '7 -- _ rl e (45)

1l " 8 r]3
Oa(,) = 7 e--%rfc ' - a----X-X-X-X-X-X-X-X7_.__f_ V'g.o, + -7 erf_2,

'2 '_ 1 r/
3_-7__ r/e'e -'v erfc rI + _ tie -2'_2 -- "-4- erfc2 '7

+--_'_ ,"_- e -°=- l-b-_-_ rla crfc r/

' l 41 I1+ _ I + _ _2 e-. _ + 3----'-'-'-'-'-'-'-X_erfc r1 + -- r1 erfc r1

+ _ 9_

2 rl q2

Here erf is the error function, err 77= _ fo e- dq, and the complementary

error function erfc 77= I - erf 77. It can easily be shown that, at the body sur-

face, 77= 0, Gi(0 ) = 6",((I) = 0, i = 1,2,3. llenee (43) is of the t'orm
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_b= 4 e %/_ sin 0 r/2 S(r/,0;t) (47)

in conformity with Eq (36). In Eq (47)

S(?],0;t) = gl(T/) -t- £ _- [g2(_) -I- 2V_-_]3(y]) co8 0 l (4S)

where g,(rl) = Gi(r/)/rF °, i = 1,2,8. The functions gi(rl) are plotted in Fig. 3. In

particular, neat" the body surface, 1.c. for r/ small, we get

1

J_(_) = Vg + °(72)

1 4

g2('7) 2 _ '7 + 0('7 _)

1 (1+ 4 2g+(,I) = _ -f;) - _ ,7 + o(,7_)

ttence

1I{{+ 2}1S(_,O;t)= _ 1 + e VT T-'3"r/ + 2et 1 + 3--'_-- 3-r/ cos0 (49)

The function S given by (49) is now used to study the behavior of flow separa-

tion near the body surface.

Although _Vang's analysis is based on the assumption of small time, the solution

may be used to give qualitative results for larger times. For this purpose we let

time T be measured in units of a/Uoo , i.e. T -----et. Eq. (49) then becomes

1.0-

0.6-
0.2-

0

-0.2- i _lX_--0"6 t-I.0
I I

0.0 2.0 4.0 6.0

_7

Fig 3. The functions gt(r/) , g2(r/) , ga(rl) .

I I
8.0 I0.0
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We observe from (50) that

(a) Only after a finite time can it happen that S = O.

(b) The time T when the surface S ---- 0 intersects widl tile body surface 77 = 0

is given by

4

2 + N/_ + 4(1 + -3-_-)T cos 0 = 0 (51)

It is clear from (51) that the surface S = 0 will first intersect with the body

surface at 0 = 7r, i.e. at the rear stagnation point.

(c) The separation time T_, defined as the time when the surface S = 0 First

intersects with the body surface, is given by

4
T_= 4

8(1 4- -_-)

+ 0(d/2)

= 0.35 + 0(e 1/2) (,52)

We note that the separation time T 8 calculated above as the time when the

separation surface first appears is identical to \¥ang's estimate of the time

when the surface shear stress first becomes zero.

(d) From (50) we see that at the separation time T_, whence 8 = 7r,

0, ] 0
= 0

T-To

This shows that initially the separation surface ,5' = 0 leaves the body sur-

face tangentially, i.e., initial separation is a tangent singular separation.

However, at any later time T > T 8 it is a non-tangential singular separation

as

S-0 _ 0 (54)
r/-0

T>T,
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T=0
0.5

O.Z
.I

T= Ts

0.5

0.2

o.i

T=I >T s

Fig 4. Impulsive flow past a stationary cylinder, R e = 100.

In Fig 4 are shown the stream surfaces, including S = 0, at three different

times T=0, T= T 8 and T= 1 >Ts, all cases for R E = 100. It is seen

that the surface S = 0 emerges from inside the cylinder; as soon as it moves

into the flow field, the flow becomes separated.

Impulsive flow past a stationary sphere can be studied similarly by taking

x¢= ¢(,.,O;t )¢ (55)

for symmetric flow, where (r,8,¢) are spherical coordinates. The flow separation

properties are expected to be qualitatively the same as those for the impulsive

flow past a circular cylinder: at some finite time T 8 after starting, a separation

stream surface will first appear tangentially at the rear stagnation point; it will

grow with time, immediately becoming non-tangential to the body surface as )t

emerges into the flow field.
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5.3 Effects of Expansion of a Circular Cylinder on Flow Separation

An interesting numerical study has just been made by l, in, Mekala, Chapman

and Tobak (1986) on the migration of the separation point on a deforming

cylinder. The qualitative aspects of the effects of deformation of the cylinder on

the onset of flow separation can now be discussed h'om a frame of reference

fixed to the body surface. From this frame of reference the effect of accelera-

tion and of deformation of the cylinder surface is equivalent to adding appropri-
ate inertia forces.

To consider the effect of surface deformation alone on flmv separation, let a(t)

be the radius of the cylinder and r the distance of a fluid particle from the sur-

face of the cylinder (Fig. 5). Let i and 0 be unit vectors in the ratial and

azimuthal directions respectively. The absolute acceleration of the fluid particle
is

2= (a+ ;"V + '2(,_;+ ,:)o,9 - (,_+ ,-)/_-'-';+ (,_+ ,.)bb

- 2"0+ ._ (56)

where A0, the quantity in large brackets, is tim acceleration of the particle.that

would be present alone if there were no deformation of the cylinder, and A D is

the additional acceleration arising from the deformation. Relative to the

cylinder surface at time t the inertia force F,. of a particle of unit mass is thus

V, = -20 = -a_ - 2a_0 (57)

U(t]

Fig 5. Uniform flow past a deforming circular cylinder showing notation.
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In the case of a flow U past a circular cylinder whose surface is expanding at

constant rate .(Fig. 5) c_ > 0 , h" = 0, the inertia force acting on the particle is

e_tua] to --2688. This force acts in the direction just opposite to the motion

(8 > 0) of the particles near the body surface, and, like an adverse pressure, has

the effect of hastening the separation time. In the case of constant-rate con-

traction of the body surface, the inertia force is 2 Id I_ which acts in the same

direction of motion as the particles near the body surface, and therefore has the

effect of delaying the separation time. These qualitative conclusions agree with

those resulting from the numerical computation of Lin, et. al. for an impulsively

starting flow past a cylinder deforming at constant rate.

The effect of non-constant rate of expansion or contraction can a]so be discussed

by adding a term --h'_ to the inertia force. There are four different cases

depending on the combination of the signs of d and _'. It can be shown that in

the case when d > 0 and a" < 0 flow separation is hastened the most, whereas in

the case _ < 0 and h" > 0 flow separation is delayed the most.

If the flow is not started impulsively but rather, is started from rest, accelerat-

ing constantly over a time interval _'c followed by a constant velocity, the effect

on the motion of the fluid particles as viewed from _e body surface-fixed frame

of reference is equivalent to adding an inertia force U over r c. Such a force is a

favorab__]e one and tends to delay flow separation. Therefore, with the same con-

stant U, larger r c will delay flow separation further. This conclusion is also in

agreement with that resulting from the numerical computation of Lin et. al.

(1986).

§ 6. CONCLUDING REMARKS

In this paper a concise mathematical framework is constructed to study the

topology of steady three-dimensional separated flow of an incompressible viscous

fluid. With flow separation defined by the existence of a stream surface which

intersects with the body surface, it is shown that the line of separation is itself a

skin-friction line. Flow separation is classified as being either regular or singu-

lar, depending respectively on whether the line of separation contains only a fin-
ite number of singular points or is a singular line of the skin-friction field.

In regular separation a line of separation originates from a saddle point of

separation of the skin-friction field and ends at nodal points of separation. It is

also shown that a saddle point of the skin-friction field on the line of separation

is simultaneously a half-nodal point of the flow field on the separation stream

surface. Conversely, a nodal point of the skin-friction field on the line of

separation is simultaneously a half-saddle point of the flow field on the separa-
tion stream surface.

The same mathematical framework proves useful for a study of the topology of

unsteady three-dlmensional incompressible flow separation when the flow is

defined relative to a coordinate system fixed to the body surface. It is shown

that separation of an unsteady incompressible viscous flow at time t, when

viewed from such a frame of reference, is topologically the same as that of the

fictitious steady flow obtained by freezing the unsteady flow at the instant t.

Several applications of this result showing effects of various forms of flow

unsteadiness on flow separation are discussed qualitatively.
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Finally, extension of the results for steady three-dimensional incompressible flow

separation to the case of steady compressible flow is straightforward. In the

latter ease we still have

(i) V is ana,ytlc (58)

(ii) 1,-7"= 0 on tile body surface B (59)

But, instead of (2), the coathluity equation now rea(ls

v-(pV) = gyp + pv.7 = 0 (60)

where p is density of the fluid. However, by using (59), equation (60) reduces to

(v.v). = 0 (61)

which, after using (59) once again, in turn implies that.

(62)

Equations (58), (59) and (62) for a compressible flow are seen to be identical to

(1), (3) and (7) for an incompressible flow. It has been noted earlier (section 2.1)

that all topological properties of steady three-dlmensional flow separation of an

incompressible fluid are derived solely on the basis of equations (1), (3) and (7).

As these latte,' equations are also shared by, a compressible fluid, it is concluded

that the topology of separation of a steady three-dimensional compressible flow

is identical to that of an incompressible flow. We remark, however, that the

topologies will not be identical in the case of unsteady flow, in view of the addi-

tional term Op/Ot that will appear in the continuity equation for compressible
unsteady flow.
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